Interstellar Medium (ISM)

Chapter index in this window —   — Chapter index in separate window

This material (including images) is copyrighted!. See my copyright notice for fair use practices. Select the photographs to display the original source in another window. Most of the ground-based telescope pictures here are from the Anglo-Australian Observatory (AAO---used by permission). Links to external sites will be displayed in another window.

Though the space between the stars is emptier than the best vacuums created on the Earth (those are enclosed spaces devoid of matter, not the household cleaning appliances), there is some material between the stars composed of gas and dust. This material is called the interstellar medium. The interstellar medium makes up between 10 to 15% of the visible mass of the Milky Way. About 99% of the material is gas and the rest is ``dust''. The interstellar medium affects starlight and stars (and planets) form from clouds in the interstellar medium, so it is worthy of study. Also, the structure of the Galaxy is mapped from measurements of the gas.

Dust

The dust is made of thin, highly flattened flakes or needles of graphite (carbon) and silicates (rock-like minerals) coated with water ice. Each dust flake is roughly the size of the wavelength of blue light or smaller. The dust is probably formed in the cool outer layers of red giant stars and dispersed in the red giant winds and planetary nebulae.

a typical tiny piece of dust

Extinction

Starlight passing through a dust cloud can be affected in a couple of ways. The light can be totally blocked if the dust is thick enough or it can be partially scattered by an amount that depends on the color of the light and the thickness of the dust cloud. All wavelengths of light passing through a dust cloud will be dimmed somewhat. This effect is called extinction.

Bok globules in IC 2948
Dark dusk clouds like these ``Bok globules'' in IC 2948 were once thought to be holes in the sky. The dark clouds block the light from the emission nebula behind.
Barnard 86 silhouetted against the stars
A dark cloud, Barnard 86, is silhouetted against a starry background. Stars form in the dark clouds. A young cluster, NGC 6520, probably associated with Barnard 86 is seen just to the left of it.

The discovery of the dust is relatively recent. In 1930 R.J. Trumpler (lived 1886--1956) plotted the angular diameter of star clusters vs. the distance to the clusters. He derived the distances from inverse square law of brightness: clusters farther away should appear dimmer. IF clusters all have roughly the same linear diameter L, then the angular diameter q should equal a (constant L) / distance. But he found a systematic increase of the linear size of the clusters with distance.

This seemed unreasonable! It would mean that nature had put the Sun at a special place where the size of the clusters was the smallest. A more reasonable explanation uses the Copernican principle: the Sun is in a typical spot in the Galaxy. It is simply that more distant clusters have more stuff between us and cluster so that they appear fainter (farther away) than they really are. Trumpler had shown that there is dust material between the stars! The extinction of starlight is caused by the scattering of the light out of the line of sight, so less light reaches us.

extinction and reddening of starlight

Reddening

star with and without dust in frontNot all wavelengths are scattered equally. Just as our air scatters the bluer colors in sunlight more efficiently than the redder colors, the amount of extinction by the interstellar dust depends on the wavelength. The amount of extinction is proportional to 1/(wavelength of the light). Bluer wavelengths are scattered more than redder wavelengths.

The 1/l behavior of the scattering indicates that the dust size must be about the wavelength of light (on the order of 10-5 centimeters). Less blue light reaches us, so the object appears redder than it should. This effect is called reddening, though perhaps it should be called ``de-blueing''. If the dust particles were much larger (say, the size of grains of sand), reddening would not be observed. If the dust particles were much smaller (say, the size of molecules), the scattering would behave as 1/l4. Trumpler showed that a given spectral type of star becomes increasingly redder with distance. This discovery was further evidence for dust material between the stars. If the Sun is in a typical spot in the Galaxy, then Trumpler's observation means that more distant stars have more dust between us and them.

You see the same effect when you observe the orange-red Sun close to the horizon. Objects close to the horizon are seen through more atmosphere than when they are close to zenith. At sunset the blues, greens, and some yellow are scattered out of your line of sight to the Sun and only the long waves of the orange and red light are able to move around the air and dust particles to reach your eyes.

preferential scattering of short wavelengths

Vocabulary

dust extinction interstellar medium
reddening

Review Questions

  1. What is the interstellar medium composed of?
  2. How do astronomers know that the non-gaseous part of the ISM cannot be made of rocks but, rather, of small ``dust'' particles?
  3. How does dust make stars appear redder than they actually are?
  4. How does dust cause the extinction of starlight?
  5. Where is the dust thought to come from?

previousGo back to previous section -- next Go to next section

Go to Astronomy Notes home

last updated: 25 May 2001

Is this page a copy of Strobel's Astronomy Notes?

Author of original content: Nick Strobel