ESA Science & Technology30-Jun-2005 16:37:57
 

Science Highlights from the First Solar Orbit

North-South Comparison

An obvious question to be asked is: do the data from the first polar passes reveal significant north-south asymmetries? This is clearly one aspect where the out-of-ecliptic studies would have benefited from the simultaneous observations available with the original two-spacecraft mission. Nevertheless, the rapid pole-to-pole scan, together with the slowly changing activity conditions characteristic of solar minimum, have enabled a comparison of the two hemispheres to be made whereby, at least to first order, temporal effects can be neglected.

The above comparison reveals modest north-south asymmetries in a number of the data sets. For example, an examination of spatial gradients in solar wind parameters reveals that the average solar wind speed at latitudes greater than 40 degrees is ~15-25 km/s higher in the north than in the south, qualitatively consistent with corresponding open coronal field line expansion factors computed using magnetogram data. Another solar wind asymmetry, presently not understood, is found in the radial proton temperature gradient, which is steeper in the north than in the south.

North-south asymmetries are also reported in the low-energy particle measurements. The recurrent increases in the flux of 50 keV electrons with a period of ~26 days referred to above were seen up to 80 degrees south latitude, but not at high latitudes in the northern hemisphere. Comparison with in-ecliptic data reveals that solar and interplanetary activity persisted through 1995, implying that the lack of variations seen in the north is a spatial rather than temporal effect.

None of the models proposed to date to explain the ~26-day recurrent behaviour would predict an intrinsic north-south asymmetry, leading to the suggestion that the observations result from differences in the physical conditions in the two hemispheres. At higher energies, the cosmic ray flux observed by Ulysses, including the ACR component, was higher at a given heliographic latitude in the north than in the south by up to 50 percent.

Not all data show north-south asymmetries. For example, the magnitude of the radial magnetic field, when corrected for heliocentric distance, and the amplitude and radial gradient of the field variances, are the same in both hemispheres. Measurements from the Ulysses plasma wave experiment reveal no significant asymmetry between the solar wind electron temperature and density profiles derived from thermal noise spectroscopy for the northern and southern hemispheres. Similarly, a comparison of directional discontinuities (DDs) and tangential discontinuities (TDs) in the north and south polar wind reveals no differences in the rate of occurrence of DDs and TDs between the two hemispheres.

Polar plot showing actual
measurements of solar wind speed
(linear scale, approx. range
350-800 km/s), magnetic field
(polarity), energetic particles and
cosmic rays (logarithmic scales,
with the cosmic ray trace offset
with respect to the lower-energy
particles) acquired by the Ulysses
experiments.

Because of the elliptical nature of
the spacecraft orbit, Ulysses
traversed the region represented in
the left-hand side of the figure much
more rapidly than that on the right.
This accounts for the difference in
appearance of the data traces in
1995 and 1996, for example. Time
ticks are shown on the outer circle
for reference.

 



For further information please contact: SciTech.editorial@esa.int